今回は令和1年(2019年)理論の問9を解いていきます。
RLC並列回路ですね!
共振するのかなー
まずは合成抵抗を求めます
並列なので
\(\displaystyle \dot Z=\frac{1}{\frac{1}{R}+\frac{1}{j\omega L}+\frac{1}{\frac{1}{j\omega C}}}\)
次に\(\dot Z\)の大きさを求めます
\(\displaystyle Z=\frac{1}{\sqrt{{(\frac{1}{R})}^2+{(\frac{1}{j\omega L}+\frac{1}{\frac{1}{j\omega C}})}^2}}\)
\(\displaystyle ~~=\frac{1}{\sqrt{{(\frac{1}{R})}^2+{(\frac{1}{j\omega L}+j\omega C)}^2}}\)
先に\(\displaystyle \omega_1,\omega_2,\omega_3の時の \frac{1}{j\omega L},j\omega C\)を求めたほうが計算が楽ですね
ちなみに。。。
\(\displaystyle \frac{1}{R}=1\times 10^{-5}\)
です
\(\omega_1\)のとき
\(\displaystyle \frac{1}{j\omega L}=\frac{1}{j5\times 10^3 \times 10^{-3}}\\
~~~~~~=-j0.2Ω\)
\(\displaystyle j\omega C=j5\times 10^3 \times 10^{-6}\\
~~~~~~=j0.05\)
電流\(I_{\omega 1}\)は。。。
\(\displaystyle I_{\omega 1}=\frac{V}{Z} \\
~~~~~~\displaystyle =\frac{V}{\frac{1}{\sqrt{{(\frac{1}{R})}^2+{(\frac{1}{j\omega L}+j\omega C)}^2}}}\\
~~~~~~\displaystyle =V\sqrt{{(\frac{1}{R})}^2+{(\frac{1}{j\omega L}+j\omega C)}^2}\\
~~~~~~\displaystyle =V\sqrt{{(1\times 10^{-5})}^2+{(-j0.2+j0.05)}^2}\\
~~~~~~\displaystyle =0.15A\)
\(\omega_2\)のとき
\(\displaystyle \frac{1}{j\omega L}=\frac{1}{j10\times 10^3 \times 10^{-3}}\\
~~~~~~=-j0.1Ω\)
\(\displaystyle j\omega C=j10\times 10^3 \times 10^{-6}\\
~~~~~~=-j0.1\)
電流\(I_{\omega 2}\)は。。。
\(\displaystyle I_{\omega 1}=\frac{V}{Z} \\
~~~~~~\displaystyle =\frac{V}{\frac{1}{\sqrt{{(\frac{1}{R})}^2+{(\frac{1}{j\omega L}+j\omega C)}^2}}}\\
~~~~~~\displaystyle =V\sqrt{{(\frac{1}{R})}^2+{(\frac{1}{j\omega L}+j\omega C)}^2}\\
~~~~~~\displaystyle =V\sqrt{{(1\times 10^{-5})}^2+{(-j0.1+j0.1)}^2}\\
~~~~~~\displaystyle =0A\)
\(\omega_3\)のとき
\(\displaystyle \frac{1}{j\omega L}=\frac{1}{j30\times 10^3 \times 10^{-3}}\\
~~~~~~\displaystyle=-j\frac{1}{30}Ω\)
\(\displaystyle j\omega C=j30\times 10^3 \times 10^{-6}\\
~~~~~~=j0.3\)
電流\(I_{\omega 3}\)は。。。
\(\displaystyle I_{\omega 1}=\frac{V}{Z} \\
~~~~~~\displaystyle =\frac{V}{\frac{1}{\sqrt{{(\frac{1}{R})}^2+{(\frac{1}{j\omega L}+j\omega C)}^2}}}\\
~~~~~~\displaystyle =V\sqrt{{(\frac{1}{R})}^2+{(\frac{1}{j\omega L}+j\omega C)}^2}\\
~~~~~~\displaystyle =V\sqrt{{(1\times 10^{-5})}^2+{(-j\frac{1}{30}+j0.3)}^2}\\
~~~~~~\displaystyle =0.267A\)
正解
\(I_{\omega 1}=0.15A,I_{\omega 2}=0A,I_{\omega 3}=0.67A \)なので
\(I_{\omega 2}<I_{\omega 1}<I_{\omega 3}\)
コメント